
Filtering with Gray-Code Kernels

Gil Ben-Artzi
Bar-Ilan University
Ramat Gan, Israel

gbenart@cs.biu.ac.il

Hagit Hel-Or
University of Haifa

Haifa, Israel
hagit@cs.haifa.ac.il

Yacov Hel-Or
The Interdisciplinary Center

Herzliya, Israel
toky@idc.ac.il

Abstract

In this paper we introduce a family of filter kernels -
the Gray-Code Kernels (GCK) and demonstrate their use
in image analysis. Filtering an image with a sequence of
Gray-Code Kernels is highly efficient and requires only 2
operations per pixel for each filter kernel, independent of
the size or dimension of the kernel. We show that the family
of kernels is large and includes the Walsh-Hadamard ker-
nels amongst others. The GCK can also be used to approxi-
mate arbitrary kernels since a sequence of GCK can form a
complete representation. The efficiency of computation us-
ing a sequence of GCK filters can be exploited for various
real-time applications, such as, pattern detection, feature
extraction, texture analysis, and more.

1. Introduction

Convolving and correlating an image with filter kernels
is one of the most important operations in image processing.
This fundamental task is usually of high complexity, espe-
cially when an extensive set of large filter kernels are in-
volved. A common approach for increasing efficiency is to
design a set of specific kernels which are efficient to apply.
The specific set can then be used to approximate any other
kernel. Studies that took this course of action include the
integral image [7], summed-area tables [3] and a general-
ized version of these called boxlets [5]. The main drawback
of these approaches are that they allow only a very limited
set of filter kernels to be computed using a fixed number of
operations per pixel.

Our work is motivated by a previous study of Hel-Or [4]
where a fast convolution scheme for the Walsh-Hadamard
(WH) kernels was introduced for pattern detection. The
computation cost of convolving each kernel is between 1
ops/pixel and up to at most ����� ops/pixel for kernels of
size � � �.

In this paper, we introduce a family of filter kernels such
that successive convolution of an image with a set of such

filters is highly efficient and requires only 2 operations per
pixel for each filter kernel, regardless of the size or dimen-
sion of the filter. This family which we named Gray-Code
Kernels (GCK) includes a very large set of filter kernels
which can be used in a wide variety of applications, such as,
pattern detection, feature extraction, texture analysis, and
more.

2. The Gray-Code Kernels

Denote by �
���
� a set of 1D kernels recursively expanded

from an initial seed vector � as follows:

Definition 2.0.1

�
���
� � �

�
���
� � ���

�����
� ���

�����
� ��

���� �
�����
� � �

�����
� 	 �� � ���	���

where ���
��� denotes the multiplication of kernel ���� by

the value �� and �� � �� denotes concatenation.
The set of kernels and the recursive definition can be vi-

sualized as a binary tree of depth �. An example is shown
in Figure 1 for � � �. The nodes of the binary tree at level

 represent the kernels of � ���

� . The leaves of the tree repre-
sent the � final kernels. The branches are marked with the
values of � used to create the kernels.

Denote ��� � � the length of �. It is easily shown
that �

���
� is an orthogonal set of �� kernels of length

���. Furthermore, given an orthogonal set of prefix
vectors ��	 � � � ��, it can be shown that the union set
�

���
��

�
� � �
�

�
���
�� is orthogonal with ��� vectors of length

���. If � � � the set forms a basis.
Figure 1 also depicts the fact that the values, �� � � � ��

along the tree branches, uniquely define a kernel in �
���
� .

Definition 2.0.2 The sequence� = �� � � � ��, ��� �+1,-1�

that uniquely defines kernel ���
���
� is the �-index of �.

We define the notion of �-relation between two filters:

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04)
1051-4651/04 $ 20.00 IEEE

[s -s s -s s -s s -s][s -s -s s -s s s -s]

[s -s s -s -s s -s s][s -s -s s s -s -s s]

[s -s s -s]

+-

[s s -s -s -s -s s s]

[s s -s -s s s -s -s]

--

α-related

[s s -s -s][s s s s]

+ -+ -+ -+ -

+ -

+ -
s

[s -s][s s]

[s -s -s s]

[s s s s s s s s]

[s s s s -s -s -s -s]

+ +

Figure 1. The set of GCK kernels and their
recursive definition as a binary tree. Arrows
indicate pairs of kernels that are �-related.

Definition 2.0.3 Two kernels ����� � �
���
� are �-related

iff the hamming distance of their �-index is one.

The �-indices of two �-related kernels are
(�� � � � ������ � � � ��) and (�� � � � ������ � � � ��). We
denote the corresponding kernels as �� and �

�

respec-
tively. Since �� � � � �� uniquely define a kernel in �

���
� ,

two �-related kernels always share the same prefix vector
of length ��� � �. The arrows of Figure 1 indicate pairs of
�-related kernels in the binary tree of depth � � �. Note
that not all possible pairs of kernels are �-related. Of spe-
cial interest are sequences of kernels that are consecutively
�-related.

Definition 2.0.4 An ordered set of kernels �� � � �����
���
�

that are consecutively �-related form a Gray Code Se-
quence (GCS). The kernels are called Gray Code Kernels
(GCK).

The term Gray Code relates to the fact that the series of
�-indices associated with a Gray Code sequence forms a
Gray Code [6]. An example of a Gray Code sequence is
shown in Figure 1 where the kernels at the leaves of the
tree are consecutively �-related. Note, however that this
sequence is not unique and there are many possible ways of
reordering the kernels to form a Gray Code Sequence.

Two �-related kernels share a special relationship which
is the basis of this paper. It is described in the following:

Given two �-related kernels ����� � �
���
� their sum

�� and their difference �� are defined as follows:

Definition 2.0.5
�� � �� � �

�

�� � �� � �
�

Theorem 2.0.6 Given two �-related kernels, ��, �
�

�

�
���
� with a common prefix vector of length�, the following

relation holds:
��� ��� � ��� ���

where �� denotes a vector with � zeros.

Proof is given in [1]. For simplicity of explanation, we now
expand � � �

���
� to an infinite sequence such that ���	 �

for ��
 and for �����. Using this convention, the relation
��� ��� � ��� ��� can be rewritten in a new notation:

������	 � ����	

With the new notation the above Theorem gives rise to the
following Corollary:

Corollary 2.0.7

������	 � �����	� �
�

��	� �
�

����	
�
�

����	 � ��
�

��	 � ����	� ������	

Corollary 2.0.7 is the core principle behind the efficient fil-
tering scheme introduced in this paper.

Let �� and �
�

be the signals resulting from convolving
a signal with filter kernel �� and �

�

respectively. Then,
by linearity of the filtering process (and Corollary 2.0.7) we
have the following Lemma (proof is given in [1]):

Lemma 2.0.8

�������	 � �����	� �
�

��	� �
�

����	
�
�

�����	 � ��
�

��	 � ����	� ������	

This forms the basis of an efficient convolution scheme
for projecting all signal windows onto all kernels. Given
the result of convolving the signal with the filter kernel �

�

,
the computation of convolving with the filter kernel �� re-
quires only � operations per pixel independent of the kernel
size. Convolving with a Gray Code Sequence of kernels is
denoted Gray Code Filtering.

2.1. Example - The 1D Walsh-Hadamard Kernels

Considering Definition 2.0.1, and setting the prefix string
to � � ���, we obtain that � ���

� is the Walsh-Hadamard basis
set of order ��. 1 A binary tree can be designed such that the
Walsh-Hadamard kernels form a Gray Code sequence (i.e.
are consecutively �-related) and are ordered in diadically
increasing sequency order. Such a tree and a discussion of
its efficiency in pattern detection is described in [4]. An
example for � � � is shown in Figure 2 where every two
consecutive kernels are �-related. For example, the first two
kernels of order 4 are:

�� � �� � � ��
�� � �� � �� ���

They share the prefix string �� ��, thus � � �. Their
sum and difference are respectively �� � �� �

� and
�� � �

 � �� and Theorem 2.0.6 holds with:

����� �	 � ����	

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04)
1051-4651/04 $ 20.00 IEEE

[1 1]

[1 -1 -1 1][1 1 -1 -1] [1 -1 1 -1][1 1 1 1]

-+

+-+ -

[1]

[1 -1]

α-related

Figure 2. Binary tree for the Walsh-Hadamard
basis set of order �. Consecutive kernels are
�-related, as shown by the arrows.

Thus, according to Corollary 2.0.7 the first two Walsh-
Hadamard kernels and their shifted versions are related by:

����� �� � ������ � ������ ����� ��

Thus, given the filtering result with the first Walsh-
Hadamard kernel, the filtering with the second kernel re-
quires only 2 operations (additions/subtractions) per pixel.

Ordering the Walsh-Hadamard kernels to form a Gray-
Code Sequence, the windowed Walsh-Hadamard transform
can be performed on a signal using only 2 operations per
pixel per kernel regardless of signal and kernel size.

3. Generalized Gray Code Kernels

The previous sections can be generalized to form GCKs
in any dimension and for various sizes other than ��. In ad-
dition, the �-index can be extended to include any scalar, al-
lowing a larger set of possible GCK, at an additional cost of
ops/pixel. The basis for these generalizations can be found
in [1]. The core principle is to form a new set of higher
dimensional GCKs by using cross products of 1D GCKs.
Two high dimensional filters are then �-related if one of
their separable 1D components are �-related. For example
consider the 2D kernels:

�� �

�
� � � �
� � � �

�
�� �

�
� � �� ��
� � �� ��

�

These kernels are separable:

�� �
�� �

�� �

�
�
�

�
�

�� � �� � � �	
�� � �� � �� ��	

Such that their 1D components ��� �� are �-related.
Given the filtering result �� of the 2D image � with ker-

nel ��, the filtering �� with kernel �� can be calculated
using only 2 operations per pixel:

������ ����� � ������� ���������� ���������� �����

Details of this extension can be found in [2].
1For simplicity, we use non-unitary basis vectors. Normalization is

straightforward and does not affect the definitions and results in this paper.

Figure 3. Natural and Texture images used in
experiments.

4. Experiments

The most attractive property of the Gray-Code Kernel
(GCK) framework is that it allows successive filtering using
only 2 ops/pixel per filter kernel. However, the sequence of
filters must be ordered according to their �-indices to form
one of the many possible Gray-Code Sequences. This sec-
tion tests the implications of this requirement in a Pattern-
Matching process using the rejection framework proposed
by Hel-Or [4].

Consider the Euclidean distance �������� between a
pattern � and an image window � resulting by project-
ing � and � onto a set of orthogonal kernels ��� 	 	 	���

: �������� �
��

���

�
��� �� ��� �

��
. Using the rejection

framework, we project the pattern and each image window
onto all
 filter kernels consecutively, where in each pro-
jection stage �, a lower bound on the Euclidean distance is
formed by the partial sum ��� �

��

���

�
��� �� ��� �

��
.

At each stage, image windows whose lower bound is above
a predefined threshold are rejected. As the number of pro-
jections � increases, the lower bound becomes tighter and
in turn more image windows are rejected. From earlier ex-
perimental results it was found that when the LB reaches
80% of the actual window-pattern distance, almost all non-
matching windows are rejected [4]. Consider the contri-
bution ���� of filter kernel �� to the Euclidean distance:

���� �
���� ���

�

�
��

�

������� averaged over all image windows.
The larger ����, the more it contributes, on average, to the
Lower bound. Thus, in order to reach the
�� goal as fast
as possible, it is advantageous to first project onto the fil-
ter kernels whose values are large. This implies that the
projection order of kernels determines the total number of
kernels required to reach the
�� goal, and consequently,
the total number of ops/pixel to complete the process.

We used the Walsh-Hadamard kernels for testing and
comparing the efficiency of three computation schemes.
Each computation scheme uses a different sequence of ker-
nels and as a consequence, results in a different operational
cost per kernel. The three computation schemes are defined
by the order of kernels:

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04)
1051-4651/04 $ 20.00 IEEE

N-N N-N T-T T-T T-N T-N N-T N-T
+DC -DC +DC -DC +DC -DC +DC -DC

Opt. 7 85 17 50 9 116 1 39
Seq. 7 88 131 196 11 162 1 139
GCK 7 88 18 58 10 125 1 42

Table 1. The number of kernels dictated by
the order of each computation scheme. Each
experiment is denoted by the pattern-image
pair (N=Natural, T=Texture) and whether the
DC was included (+DC) or not (-DC).

� Optimal - The best order of kernels dictated by their
contribution �. However, in terms of computation,
since it does not form a Gray Code Sequence, project-
ing onto each kernel, naively requires ����� ops/pixel.

� Sequency - The order of increasing spatial frequency
of each kernel. The computation cost requires from
1 ops/pixel up to ����� ops/pixel, exploiting the tree
structure of Figure 2 [4]. This computation scheme is
known to best preform for natural images.

� GCS - The order of kernels that form a GCS and is as
similar as possible to the Optimal order (i.e. contains
as few additional kernels as possible beyond those of
the Optimal sequence). Using the filtering scheme de-
scribed above, filtering with each kernel can be per-
formed using only 2 ops/pixel.

The results using the 3 computation schemes were com-
pared over 4 pattern-image pairs. Two images of size
���� ��� were chosen (see Figure 3), representing a ’nat-
ural’ and a ’texture’ image. A ��� �� window was chosen

20

100

200

400

800

1000

Experiments

T
ot

al
 #

 o
f o

ps
/p

ix
el

GCK
Sequency
Optimal

 N−N
+DC

 N−N
−DC

 T−T
+DC

 T−T
−DC

 T−N
+DC

 T−N
−DC

 N−T
+DC

 N−T
−DC

Figure 4. The total number of ops/pixel re-
quired by each of the computation schemes.
Each experiment is denoted as in Figure 1.

randomly from each image and these served as the patterns,
denoted as ’natural pattern’ and ’texture pattern’. Each case
of pattern and image pair was tested both with and without
the DC kernel. Table 1 presents the number of kernel re-
quired by each computation scheme in order to reach the
��� goal. This number is dictated by the constraints on the
order which characterized each computation scheme. Fig-
ure 4 shows the total number of ops/pixel required by the 3
computation schemes for the 4 pattern-image cases with and
without the DC value. It can be seen that the GCS scheme
always required fewer ops/pixel than the other two compu-
tation schemes. Details of the experimental procedure, and
analysis can be found in [1]).

5. Conclusions

The Gray Code Kernels introduce the possibility of com-
puting the projections of all image windows onto a sequence
of kernels using only 2 operations per pixel per kernel.
Moreover, the computation cost is independent of the ker-
nel size and dimension. In addition, for integer seed vectors,
the computation is performed using only integer operations
which are much faster than floating operations in most hard-
ware. We also show that using different seed kernels �, a
large family of GCKs can be created. Using various or-
ders of the kernels numerous Gray Code Sequences can be
formed.

The unique properties of the GCK framework make it an
attractive choice for many applications that require efficient
applications of filter banks, such as feature extraction, seg-
mentation, block matching, texture analysis and synthesis.

References

[1] G. Ben-Artzi. The gray-code filter kernels (gck). Master’s
thesis, Bar-Ilan University, Ramat-Gan, Israel, 2003.

[2] G. Ben-Artzi, Y. Hel-Or, and H. Hel-Or. Generalized gray-
code filter kernels (gcf). In preparation.

[3] F. C. Crow. Summed-area tables for texture mapping. In Proc.
SIGGRAPH, volume 18, pages 207–212, 1984.

[4] Y. Hel-Or and H. Hel-Or. Real time pattern matching using
projection kernels. In Proc. ICCV, pages 1486–1493, Nice,
France, 2003.

[5] P. Simard, L. Bottou, P. Haffner, and Y. LeCun. Boxlets: a fast
convolution algorithm for neural networks and signal process-
ing. In Advances in Neural Information Processing Systems
11. MIT Press, 1999.

[6] S. Skiena. Implementing Discrete Mathematics: Combina-
torics and Graph Theory with Mathematica. Addison-Wesley,
Reading, Massachusetts, 1990.

[7] P. Viola and M. Jones. Robust real-time object detection.
Technical Report CRL 2001/01, The Cambridge Research
Laboratory, Febuary 2001.

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04)
1051-4651/04 $ 20.00 IEEE

	footer1:

