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Motivation

 Image filtering with a successive set of kernels Is very common
In many applications:

— Pattern classification
— Pattern matching
— Texture analysis
— Image Denoising

In some applications applying a large set of filter kernels is
prohibited due to time limitation.



Example 1: Pattern detection

o Pattern Detection: Given a pattern subjected to some type of
deformations, detect occurrences of this pattern in an image.

e Detection should be:
— Accurate (small number of mis-detections/false-alarms).
— As fast as possible.




Pattern Detection as a Classification Problem

Pattern detection requires a separation between two classes:

2. Thd Pfydglgction complexity is
doripated:Ry: the feature extraction

Z3 - Classifier
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Feature extraction



[Feature Selection

 Inorder to optimize classification complexity, the feature set
should be selected according to the following criteria:

1. Informative: high “separation” power
2. Fast to apply.



Example 2: Pattern Matching

A known pattern is sought in an image.
 The pattern may appear at any location in the image.
A degenerated classification problem.




Trhe Euclidean Distance
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Complexity (2D case)

Average # Run Time for
Operations per Space Integer 321;(“( |ma%e”|
- - x32 pattern :
Pixel Arithm. e
: +: 2k2
NENVE N2 Yes 5.14 seconds
* k2
+. 36logn
Fourier *: 24 log n n2 No 4.3 seconds

Far from real-time performance




Suggested Solution: Bound [Distances using
Projection Kernels (Hel-or2 03)

* Representing an image window and the pattern as
points in Rk

de(p.a)= In-alz=|| [@] - 2] ||2

 If p and q were projected onto a kernel u, it follows
from the Cauchy-Schwarz Inequality:

de(p,q) = [u]# de(pTu, gTu)

g ’\
*D

—




Distance Measure In Sub-space (Cont.)

 |f g and p were projected onto a set of kernels [U]:




How can we Expedite the Distance Calculations?

Two necessary requirements:

1. Choose informative projecting kernels [U]; having
high probability to be parallel to the vector p-g.

2. Choose projecting kernels that are fast to apply.
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Our Goal

Design a set of filter kernels with the following properties:

— “Informative” In some sense.
— Efficient to apply successively to images.
— Consists of a large variety of kernels.

— Forms a basis, thus allowing approximating any set
of filter kernels.



[Fast Filter Kernels

e Previous work: .
— Summed-area table / Franklin [1984] | average / difference
_ Boxlets/ Simard, et. Al. [1999] C kemels
— Integral image/ Viola & Jones [2001] ~

e Limitations:
— A limited variety of filter kernels.
— Approximation of large sets might be inefficient.

— Does not form a basis and thus inefficient to compose
other kernels.



Our work based'upon

Real-Time projection kernels [Hel-Or? 03]

e A set of Walsh-Hadamard basis kernels.

e Each window In a natural image Is closely
spanned by the first few kernel vectors.

 Can be applied very fast In a recursive manner.



Tihe Walsh-Hadamard Kernels:




Walsh-Hadamard v.s. Standard Basis:

Energy of Walsh Coeficients for distance between 2 images Energy of Delta Coefiicients for distance between 2 images
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The lower bound for distance value in % The lower bound for distance value in %
v.S. number of Walsh-Hadamard v.S. number of standard basis projections,
projections, Averaged over 100 pattern-image pairs of
Averaged over 100 pattern-image pairs of size 256x256 .

size 256x256 .



The Walsh-Hadamard Tree (1D case)
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The Walsh-Hadamard Tree - Example
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Properties:

Descending from a node to its child requires one
addition operation per pixel.

The depth of the tree Is log k where k Is the
kernel’s size.

Successive application of WH kernels requires
between O(1) to O(log k) ops per kernel per pixel.

Requires n log k memory size.

Linear scanning of tree leaves.




Walsh-Hadamard Tree (2D):

 For the 2D case, the projection is performed in a similar
manner where the tree depth is 2log k

e The complexity is calculated accordingly.
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Construction tree for 2x2 basis



WH for Pattern Matching

— Ilteratively apply Walsh-Hadamard kernels to each
window w; In the Image.

— At each iteration and for each w; calculate a lower-
bound Lb; for |p-w;|-.

— If the lower-bound Lb; is greater than a pre-defined
threshold, reject the window w; and ignore it in
further projections.



Example:

I1[Fi|guna No. 1 #
e |

Sought Pattern

Initial Image: 65536 candidates



5 | Figure No. 2

After the 1% projection: 563 candidates



8 -FigurE No. 3

After the 2"d projection: 16 candidates



5 Figure No. 4

After the 3" projection: 1 candidate



% of pixels remaining at each projection
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Frojection # (Basis #)

Percentage of windows remaining following each
projection,
averaged over 100 pattern-image pairs.

Image size = 256x256, pattern size = 16x16.



Example with Noise
Noise Level =40  Detected patterns.
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Noise Level

Number of projections required to find all patterns, as a
function of noise level. (Threshold is set to minimum).
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Projection #

Percentage of windows remaining following each
projection,
at various noise levels.

Image size = 256x256, pattern size = 16x16.



DC-Invariant Pattern Matching
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Five projections are required to find all 10 patterns
(Threshold is set to minimum).



Complexity (2D case)

Average # Run Time for
Operations per Space Integer 321:;“( 'ma%‘i”
- - x32 pattern :
Pixel Arithm. e
+: 2k?
Naive — n? Yes 4.86 seconds
+. 36 1logn
I 2
Fourier % 24 log n n No 3.5 seconds
New +: 2logk + ¢ n?log k Yes 78 msec




Advantages:

— WH kernels can be applied very fast.

— Projections are performed with additions/subtractions
only (no multiplications).

— Integer operations (3 times faster for additions).
— Possible to perform pattern matching at video rate.
— Can be easily extended to higher dim.



LLimitations

— Limited set - only the Walsh-Hadamard kernels.
— Each kernel is applied in O(1)-O(d log k)

— Limited order of kernels.

— Limited to dyadic sized kernels.

— Requires maintaining d log k images in memory.



The Gray Code Kernels (GCK):

 Allowing convolution of large set of kernels in O(1):

— Ino
— |Ino

ependent of the kernel size.
ependent of the kernel dimension.

Al

ows various computation orders of kernels.

— Various size of kernels other than 2/n.

— Requires maintaining 2 images in memaory.



The Gray Code Kernels — Definitions (1D)

Input
1. A seed vector §.

2. A set of coefficients ay, o, ... oy € {+1,-1}.
Output
A set of recursively built kernels :

VO

Vv,

Vv,



GCK - Formal Definitions
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1 Dim GCK

* The set of kernels at level k is denoted V4.

* The Initial seed s can be any vector.

* V4 forms an orthogonal set of 2% kernels .

* When [s]=1, V4® forms the WH kernels of size 2,



Definition 1. The sequence [ou o... ok ] that
uniquely defines a vector v e V) is called the
alpha-index of v.

a-index: [-,+] @-inaeex [i++]

[s -S] [s s]

[S-S S -5] [S-S-S S] [S S-S -] [Ss s S]



Definition 2: Two vectors v;,v; € v® are
called alpha-related if the hamming
distance of their alpha-index Is one.

An ordered set of GCK that are
consecutively alpha-related are called a

Gray-Code Sequence (GCS)
[s]
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GCS Properties

Let /' and '/ betwo a-related vectors:
and \/ share a similar prefix vector of length A.

> I

OL1:(+,-,-) - V_
a2:(+1_1+) —) V+

V,- [(S S-S -s' S S-S -9]
V.- ['S S-S -S:-S-S S S]
e

Shared prefix, A=4]S]|



GCS Properties

Define:

Main Result:

Vp(i-A): Vm(l) (Proof by induction)



Example

V,-[s s s -s s s -s -g]

V.-[s s s -s s -s s g]

V,- [2s 25 -2s -2 O O O O]

V.- [0 0O O O 2s 2s -2s5 -25]



GCS — Main Result

Vy(i-8)= V(i

V.(1) = V. (-A)+V_()+V_(1-4)

V_(1) =-V_(I-A)+V.(D-V. (I-A)



Efficient convolution using GCS

e If'V/ and '/ are a-related and IS a given signal:

b, =V, *S
b =V %S

b, (i) = b, (i-A)+b_(i)+h_(i-A)
b (i) = -b_(i-A)+b, (i)-b, (i-A)

Given the convolution result of b_, the convolution
result of b, can be computed using only
regardless the size of the kernels !



Example
V, V.
[+1+1-1-1] [+1-1-1+1] A=1

b.()= b.(i-1)+b_(i)+b_(i-1)

11 23 31
-1 -1 -1 <1 +1 +1
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2 ops/pixel regardless of size & dimension of GCK




Generalization to higher dim.

o Asetof 2D kernels can be generated using an outer
product of two 1D GCK

yikuko) :{v1 XV, \vl eV v, eV, }

S1 52

V=V, XV, & V(i’j)zvl (i)Vz (J)

e This can be generalized to higher dimension.



Example of the set V{3 (2D WH)
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Definition a-index:

If glza'indEX(Vl) / \
and Qfoc-index(vz)
then

[g]_ Qz ] — Ot'indeX(V]_XVZ) I DS BN

K, levels:
operations
along 15t dim

K, levels:
operations
along 28t dim



nD GCK

Definition: ~ Two vectors v, v, eVi*) are

S1:5;

called alpha-related If the hamming distance
of their alpha-index Is one.

An ordered set of 2D GCK that are
consecutively alpha-related form a
Gray-Code Sequence (GCS)

Every two consecutive 2D kernels that are o-
related can be computed using only 2 ops/pix
regardless of the size (and dim.) of the kernels !



Ordering the GCS

Conclusion: Applying successive convolutions with a
set of GCS kernels requires 2 ops/pixel/kernel.

e Questions:
— How many GCS are there?
— How should we choose the best GCS?



» Observation 1: The a-index of a 2D kernel veV..*
can be viewed as a vertex point in a k;+k, dim
hypercube.

« Observation 2: The set V!**:) s isomorphic to a k,+k,

Sy

dim hypercube graph whose edges connect o.-related
vertices.

e Observation 3: A GCS is isomorphic to a Hamiltonian
path in the hypercube graph.
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e Conclusion 1: The number of possible GCS is identical
to the number of different Hamiltonian cycles in the
assoclated hypercube graph (2, 8, 96, 43008, ... [Gardner
86] ) .

e Conclusion 2: Finding an optimal GCS is NP-Complete.
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Example

We would like to convolve with the marked WH kernels:

=}-=f-:
=12,

Greedy : O(logk)
Schemes  Sequency : O(1)-O(logk)

GCS - O(1)

kernel/pixel.



EXperiments

Task: pattern matching using WH projection kernels
(Hel-Or et. Al. 2003).

Measure total number of operations with and without DC.

Images

texture ' natural
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Experiments-summary

Total # of ops = (# kernels) * (# ops/kernels)

P
i)
O
- Equal total # of ops
&_) | \\\/
5
=1

. Sequency

GCK

~.. Greedy

Log(#ops/kernel)



Conclusions

Advantages

Highly efficient — 2 ops/pixel/kernel.

Independent of the kernel size and dimension —
depends only on the number of kernels.

Integer operations.
Very large set of kernels, using flexible design.

The order of kernels can be optimized to
Include informative kernels (NP complete).

Requires only 2|image| memory size.



L imitations

» Each kernel - computation depends on the previous
kernels In the sequence. For a single kernel this
framework is inefficient.

* The kernels cannot be computed using ANY order
that we choose.

 Efficient only when used on a group of image
windows (not on a single one).
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