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Abstract

It is known that epipolar geometry can be computed from
three epipolar line correspondences but this computation is
rarely used in practice since there are no simple methods to
find corresponding lines. Instead, methods for finding cor-
responding points are widely used. This paper proposes a
similarity measure between lines that indicates whether two
lines are corresponding epipolar lines and enables finding
epipolar line correspondences as needed for the computation
of epipolar geometry.

A similarity measure between two lines, suitable for video
sequences of a dynamic scene, has been previously described.
This paper suggests a stereo matching similarity measure
suitable for images. It is based on the quality of stereo match-
ing between the two lines, as corresponding epipolar lines
yield a good stereo correspondence. Instead of an exhaustive
search over all possible pairs of lines, the search space is
substantially reduced when two corresponding point pairs are
given.

We validate the proposed method using real-world images
and compare it to state-of-the-art methods. We found this
method to be more accurate by a factor of five compared to
the standard method using seven corresponding points and
comparable to the 8-point algorithm.

1. Introduction

The fundamental matrix is a basic building block of mul-
tiple view geometry and its computation is the first step in
many vision tasks. The computation is usually based on pairs
of corresponding points. Matching points across images is
error prone and many subsets of points need to be sampled
until a good solution is found. In this work we address
the problem of robustly estimating the fundamental matrix
from line correspondences, given a similarity measure between
lines.

The best-known algorithm, adapted for the case of fun-
damental matrix, is the eight point algorithm by Longuet-
Higgins [8]. It was made practical by Hartley [5]. The overall
method is based on normalization of the data, solving a set
of linear equations and enforcing the rank 2 constraint [9].
The requirement of eight point correspondences can be relaxed
to seven. This results in a cubic equation with one or three
real solutions. The estimation from 7 points is very sensitive
to noise. These methods are often followed by a non-linear
optimization step.

The fundamental matrix can also be computed from three
matching epipolar lines [6]. Given three such correspondences,
the one dimensional homography between the lines can be
recovered as the epipolar lines in each of the images intersect
at the epipoles. The 3 degrees of freedom for the 1D homog-
raphy together with the 4 degrees of freedom of the epipoles
yield the required 7 degrees of freedom needed to compute
the fundamental matrix.

There are a few papers using corresponding epipolar lines
to compute epipolar geometry, but these are only applicable
to videos of dynamic scenes [11], [1], [7]. The most relevant
paper is [7], describing a similarity between lines based on
scene dynamics.

We present a new similarity measure between lines, and
utilize it to robustly compute the fundamental matrix. This
similarity measure is based on the brightness consistency
(stereo matching) that exists between corresponding epipolar
lines. We can reduce the search space for corresponding
epipolar lines by giving two corresponding points. This is
compared to the 7 or 8 points normally required.

Fundamental matrix computation from points correspon-
dences has to take into account mistaken correspondences
(outliers). Using a RANSAC approach, multiple subsets of
points are sampled, so that with high probability one subset
will not include any outlier. Using only 2 points as needed
in our method substantially reduces the number of samples.
For example, if 50% of correspondences are correct, and we
require a probability of 99% that one subset will have no
outliers, we will need to select 1, 177 8-point subsets, 588
7-point subsets, and only 17 subsets of 2-points.

2. Previous Work

2.1. Computing the Fundamental Matrix

The fundamental matrix is a 3× 3 homogeneous rank
two matrix with seven degrees of freedom. There are various
formulations that have been considered to produce a minimal
parameterization with only seven parameters [6].

The most common parameterization is from the correspon-
dences of seven points and can be computed as the null space
of a 7×9 matrix. The rank two constraint leads to a cubic
equation with one or three possible solutions.

The method we will follow is based directly on the epipo-
lar geometry entities. The fundamental matrix is represented
by the epipoles and the epipolar line homography. Each of the



Figure 1: A motion barcode b of a line l is a vector in {0, 1}N .
The value of bl(i) is ”1” when a moving object intersects the line in
frame i (black entries) and ”0” otherwise (white entries).

two epipoles accounts for two parameters. The epipolar line
homography represents the 1D-line homography between the
epipolar pencils and accounts for three degrees of freedom.

2.2. Finding Corresponding Epipolar Lines

Previous methods found corresponding epipolar lines from
videos of dynamic scenes. Sinha and Pollefeys [11] used sil-
houettes to find corresponding epipolar lines for calibration of
a network of cameras, assuming a single moving silhouette in
a video. Ben-Artzi et al. [1] accelerated Sinha’s method using
a similarity measure for epipolar lines. The similarity measure
is a generalization of Motion Barcodes [2] to lines. This line
motion barcode was also used in [7] to find corresponding
epipolar lines.

2.3. Motion Barcodes of Lines

Motion Barcodes of Lines were used in the case of syn-
chronized stationary cameras viewing a scene with moving
objects. Following background subtraction [3] we obtain a
binary video, where ”0” represents static background and ”1”
moving objects.

Given such a video of N binary frames, the Motion
Barcode of a given image line l [1] is a binary vector bl
in {0, 1}N . bl(i) = 1 iff a silhouette of a foreground object
intersects at least one pixel of line l at the ith frame. An
example of a Motion Barcode is shown in Fig 1.

The case of a moving object seen by two cameras is
illustrated in Fig. 2. If the object intersects the epipolar plane
π at frame i, and does not intersect the plane π at frame j,
both Motion Barcodes of lines l and l′ will be 1, 0 at frames
i, j respectively. Corresponding epipolar lines therefore have
highly correlated Motion Barcodes.

Similarity Score Between Two Motion Barcodes. It was
suggested in [2] that a good similarity measure between
motion barcodes b and b′ is their normalized cross correlation.

2.4. Stereo Matching

Depth from two stereo images is traditionally computed by
matching along corresponding epipolar lines. Our hypothesis
is that stereo matching will be more successful when applied to
corresponding epipolar lines, rather than to random, unrelated
lines. The success of stereo matching along two lines is our
indicator whether these two lines are corresponding epipolar
lines.

Many different stereo matching methods exist (see
Scharstein and Szeliski [10] for a survey). The stereo matching
methods can be roughly divided to global and local methods.
Since we are not interested in estimating an accurate per-
pixel disparity, but only in line-to-line matching, we used a

Figure 2: Illustration of a scene with a moving object viewed by two
video cameras. The lines l and l′ are corresponding epipolar lines,
and π is the 3D epipolar plane that projects to l and l′. At time
t = 1 the object does not intersect the plane π, and thus does not
intersect l or l′ in the video. At times t = 2, 3 the object intersects
the plane π, so the projections of this object on the cameras does
intersect the epipolar lines l and l′. The motion barcodes of both l
and l′ is (0, 1, 1)

a) b)

c) d)
Figure 3: Matching epipolar lines using stereo matching. (a-b)
Matching epipolar lines across two view. Computed epipolar lines
by our method (green) are very close to the ground truth (blue). (c)
The intensity profile of the two corresponding lines found by our
approach. (d) Intensity profile after warping due to stereo correspon-
dence.

dynamic programming stereo method. Dynamic programming
is the simplest and fastest global stereo algorithm, is relatively
robust, and it gives the optimal solution for scanline matching.

3. The Stereo Matching Similarity

Two corresponding epipolar lines are projections of the
scene intersected by the same epipolar plane. We assume
that the intensities along corresponding epipolar lines are
related through stereo disparities, as is traditionally used in
stereo. Stereo depth is computed by matching points along
corresponding epipolar lines. The stereo matching similarity
between two lines, l1, l2, is therefore related to their stereo
matching score as defined in Eq. 1.

As the compared lines are usually not aligned with the
images axes, they should be re-quantized to equidistant points



along them. Let xi be the 2D coordinates of equidistant points
along line l1, and let yi be the 2D coordinates of equidistant
points along line l2. The similarity between the two lines is
based on their intensity differences. It is formulated by the
well known stereo matching equation [10], [12] given the two
lines l1 and l2, and the disparity di for every point xi on l1:

C(d; l1, l2) =

n∑
i=1

φ(di; r) +

n∑
i=2

ψ(di;α, λ), (1)

where φ(di; r) is the truncated L2 intensity difference:

φ(di; r) = min{(I1(xi)− I2(yi+di
))2, r}

and r = 502 [10]. The smoothness term ψ of the disparities
di is given by:

ψ(di;α, λ) = min(λ · (di − di−1)2, α).

where in our implementation we selected λ = 2 and α = 3.
The distance between two lines is the minimal disparity, C∗:

C∗ = min
d∈Zn

{
C(d; l1, l2)

}
, (2)

Since we find the minimal disparities in Eq. 2 using
dynamic programming, the order constraint commonly used
in stereo matching, di+1 ≥ di, is naturally obtained.

4. Fundamental Matrix from Corresponding
Lines

Given candidate corresponding pairs of epipolar lines be-
tween cameras A and B, our goal is to find the fundamental
matrix F between the cameras. This will be carried out
using a RANSAC approach, as not all of our correspondence
candidates are correct. Among all possible pairs of lines,
one in each image, we pick as candidate pairs those pairs
having highest stereo matching similarity. To overcome the
wrong correspondences among those candidates pairs, we use
RANSAC [4].

In each RANSAC trial, two pairs of candidate correspond-
ing epipolar lines are selected. This gives two candidates for
epipolar lines in each camera, and the epipole candidate for
this camera as the intersection of these two epipolar lines.
Next, an additional pair of corresponding epipolar lines is
found from lines incident to these epipoles. The homography
H between corresponding epipolar lines is computed from
these three pairs of epipolar lines, described in detail in
Sec. 4.1.

The consistency score of a proposed homography H de-
pends on the number of inliers that H transforms successfully
as described in Section 4.2. Given the homography H , and
the epipole e′ in B, the fundamental matrix F is [6]:

F = [e′]xH (3)

4.1. Computing the Epipolar Line Homography

We compute the Epipolar Line Homography using
RANSAC. We sample pairs of corresponding epipolar line
candidates with a probability proportional to their stereo

matching similarity as in Eq. 2. Given 2 sampled pairs (l1, l
′
1)

and (l2, l
′
2), corresponding epipole candidates are: e = l1× l2

in Camera A, and e′ = l′1 × l′2 in Camera B. Given e and e′,
a third pair of corresponding epipolar line candidates, (l3, l′3),
is selected such that they pass through the corresponding
epipoles.

The homography H between the epipolar pencils is cal-
culated by the homography DLT algorithm [6], using the 3
proposed pairs of corresponding epipolar lines.

4.2. Consistency of Proposed Homography

Given the homography H , a consistency measure with
all epipolar line candidates is calculated. This is done for
each corresponding candidate pair (l, l′) by comparing the
similarity between l′ and l̃′ = Hl. A perfect consistency
should give l′ ∼= l̃′.

Each candidate line l in A is transformed to B using the
homography H giving l̃′ = Hl. To measure the similarity in
B between l′ and l̃′ we use the image area enclosed between
the lines.

The candidate pair (l, l′) is considered an inlier relative
to the homography H if the area between l′ and l̃′ is smaller
than a predefined threshold. In the experiments in Sec. 6 this
threshold was taken to be 3 pixels times the width of the
image. The consistency score of H is the number of inliers
among all candidate lines.

5. Fundamental Matrix From Two Points

The process described in Sec 4 starts by computing the
stereo matching similarity between all possible pairs of lines
in the two images. This is computationally expensive, and
many wrong correspondences will still have a good score. In
order to reduce the computation time and reduce the number
of mismatches, we assume that two pairs of corresponding
points are given. Note that it is still much lower than the 7 or
8 pairs of points usually needed.

5.1. Problem Formulation

Given two images I1, I2 with two pairs of corresponding
points (p1, p2) and (q1, q2), we want to estimate the funda-
mental matrix F between the images.

We start by seeking epipolar lines for each pair of cor-
responding points, using the consistency of the intensities
along the lines. This consistency is computed from an optimal
stereo matching along these lines. Each corresponding pair of
points gives us an epipolar line in each images, and two pairs
of corresponding points give us two epipolar lines in each
image. Once we find the epipolar lines for the two pairs of
corresponding points, the intersections in each image of the
two epipolar lines gives the epipole. The third epipolar line
needed for computing F is found from lines passing through
the recovered epipoles.

In later subsections we introduce an iterative approach
to compute the fundamental matrix using a RANSAC based
algorithm for finding epipolar lines and epipoles.
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Figure 4: The Two-Points algorithm. (a) Given a pair of corre-
sponding points, p1 in Image 1 and p2 in Image 2, we examine
a pencil of lines passing through each point. (b) Each line from the
pencil p1, together with the line from the pencil of p2, having the
best stereo matching score, is selected as a possible corresponding
pair of epipolar lines. (c) A pair of corresponding epipolar lines,
passing through the second pairs of corresponding points, q1 and q2,
is selected in the same manner. Their intersection in each image gives
the third point - the epipole (which may be outside the image). (d)
A bisector epipolar line is selected in Image 1, and a corresponding
epipolar lines is searched for in the pencil of lines passing through
to the epipole in Image 2. (e) The last stage of the process gives
us three corresponding epipolar lines, from which the epipolar line
homography is computed.

5.2. Computation of Epipolar Line Homography

Following are the steps for the computation of the epipolar
line homography between two images, when two correspond-
ing pairs of points in two images, (p1, p2) and (q1, q2), are
given. The process is outlined in Fig. 4.
1) Through each pair of the selected points we generate a

set of pairs of epipolar line candidates {lip1
, lip2
}. lip1

and
lip2

will be considered candidates only if the second (lip2
)

is closest to the first (lip1
) and the first is closest to the

second (mutual best matches), using the distance of Eq. 2.
This step creates two sets of pairs of lines, one set for
(p1, p2) and another set for (q1, q2). See Fig. 4.a.

2) Iterate:
a) A candidate pair of epipolar lines is sampled from each

2 point pair set generated in Step 2, see Fig. 4.b. Their
intersections in each image, e1 = lip1

× ljq1 in Image
1, and e2 = lip2

× ljq2 in Image 2, are the hypothesized
epipoles, see Fig. 4.c.

b) A third corresponding pair of epipolar lines, {le1 , le2},
is found. The line passing through the epipole e1 in
image I1 is taken as the bisector of the two lines
that generated the epipole. The corresponding line,
passing through the epipole e2 in image I2, is found by
searching the closest line, in terms of stereo distance,
from the pencil of lines passing through the epipole in

a) b)

c)
Figure 5: Initial validation of the epipolar line homography. (a) The
first image. The blue lines are the generating lines of the epipole
and the red line is the third epipolar line, the angle bisector between
them. The best correspondence to the red line is found in Image
2, and from these three lines the homography H from Image 1 to
Image 2 is computed. (b) The second image. The red line is the
bisector, for which a best correspondence is found in Image 1. This
gives an independently estimated homography G from Image 2 to
Image 1. (c) The composite homography GH should map epipolar
lines to themselves. The red lines in the first image are transferred
forward and backward using the composite homography. In an ideal
case these lines should overlap.

Image 2. This is shown in Fig. 4.d. The epipolar line
homography H from Image 1 to Image 2 is computed
from the three pairs of corresponding epipolar lines,
{lip1

, lip2
}, {ljq1 , l

j
q2}, and {le1 , le2}.

c) Another corresponding pair of epipolar lines is found,
but this time a bisector epipolar line is selected in
Image 2, and a corresponding epipolar lines is searched
for in the pencil of lines passing through the epipole in
Image 1. The epipolar line homography G from Image
2 to Image 1 is now computed. See Fig. 5.

d) The above epipolar line homographies will be correct
only if H = G−1, and each epipolar line in Image 1
should satisfy {li ≈ GHli}. This can be measured by
computing the area between li and GHli as in Fig. 6.

3) From all homographies computed in the previous step, we
further examine the 5% having the highest validation score.
For these high-ranked homographies we perform a full
validation process.

4) Full Validation: We sample a large number of epipolar
lines through the epipole in one image and transfer them to
the other image using the epipolar line homography. For
each pair of epipolar lines we measure the line distance
according to Eq. 2 and sum over all lines.

5) Using the best homography H from the previous step, we
compute the fundamental matrix: F = [e2]×H

−1.

5.3. Remarks

• Robustness is improved by increasing the number of can-
didates. Instead of examining only pairs of lines that are
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Figure 6: The epipolar area measure. (a) The epipolar distance of
one point. (b) Considering all the point on the line and evaluating
their symmetric epipolar distance is the area between the two lines.
(c) The total epipolar area is evaluated for several sampled epipolar
lines.

mutual best matches, we only require them to be in the top
2 matches of each other.

• If 3 (instead of 2) corresponding pairs of point matches are
given, the algorithm can be significantly accelerated.

• The stereo matching is computed with an O(N) time dy-
namic program.

5.3.1. Complexity Analysis. Let the image sizes be N×N .
Through each point we sample O(N) lines. We compare,
using stereo matching, O(N), each sampled line with the
O(N) lines sampled at its corresponding point. After O(N2)
comparisons we are left with O(N) candidate pairs of epipolar
lines. As we are given two points in each image, each point
generates O(N) candidate epipolar lines, we get O(N2) pos-
sible intersections of epipolar lines, each such intersection is
an hypotheses for the epipoles, e1 and e2.

For the third pair of corresponding epipolar line we select
lines through the epipoles. In I1 we select the bisector of the
two epipolar lines that generated e1. We find the best match for
this line in I2 by comparing it to O(N) lines through e2. This
step can be skipped if there is a third pair of corresponding
points r1 and r2, then r1×e1 and r2×e2 is the third epipolar
line pair.

Validation is carried out by taking the epipolar area mea-
sure (See Fig. 6) of a fixed number of epipolar line in I1
through e1, {lie1, GHlie1} with a complexity of O(1).

For two points finding the possible pairs of epipoles to-
gether with finding the third line pair and validation takes
O(N4) steps. When the algorithm is based on 3 pairs of
corresponding points it requires at most O(N3) steps.

In practice, after filtering lines with little texture, a much
smaller number of iterations is required.

6. Experiments

We evaluated our method using stereo images of the house
dataset by VGG, Oxford university [14]. The house dataset

Figure 7: The house dataset from VGG is used for real data
experiments. The dataset includes 10 images with various angles.
Ground truth points and camera matrices are available.

includes 10 images, representing different angles. The images
are presented in Figure 7. We used every consecutive pair of
images as a stereo pair, which results in 9 pairs. The size of
the images is 768× 576.

The quality of the computed fundamental matrices was
evaluated using the symmetric epipolar distance [6] with re-
spect to the given ground truth points. The baseline method is
the 7-point algorithm. The 7-point method returns 3 possible
solutions. In all experiments we selected for comparison the
solution with the lowest symmetric epipolar distance. We also
compared with the 8-point algorithms, which returned high-
quality solutions after data normalization. Both the 7-point and
8-point algorithm were computed using the VGG toolbox[13].

For each pair of images we repeatedly executed 10 iter-
ations. In each iteration we randomly sampled two pairs of
corresponding points as input to our approach, seven pairs of
corresponding points to use as input to the 7-point method
and eight pairs of corresponding points to use as input to the
8-point method. The points were sampled so that they were
at least 30 pixels apart to ensure stability. We computed the
fundamental matrix using our method, the 7-point method,
and the 8-point method. The symmetric epipolar distance was
computed for each method. The points were sampled so that
they were at least 30 pixels apart to ensure stability.

Fig. 8 shows the resulting fundamental matrix for each
pair of images. Our method significantly outperforms the
the 7-point algorithm. In 66% of the cases the symmetric
epipolar distance is less than 3 pixels. The median error in
our approach is 2.54. For the 8-point algorithm the median is
2.77 while the median in the 7-point algorithm is 25.8. Our
approach depends on global intensity matching rather than
on the exact matching of the points. Pairs 7, 8 introduce a
challenging stereo matching and as a result the quality of
our method is effected. The global intensities in pairs 1-6
can be accurately matched and as a result the quality of the
estimated fundamental matrix is high. Fig. 9 shows an example
of rectification using our estimated fundamental matrix for
pair number 1. Each horizontal line in the images is a pair of
epipolar lines. Corresponding feature points are placed on the



Image Pairs 7-point 8-point 2-point

1 27.11 3.27 2.54

2 25.80 2.11 2.91

3 27.14 2.02 2.01

4 27.11 2.5 2.04

5 25.47 2.00 2.34

6 14.67 2.77 4.12

7 18.87 3.7 5.76

8 18.97 4.22 5.66

9 26.13 5.89 2.30

Figure 8: The symmetric epipolar distance of the estimated fun-
damental matrix using the 7-point/8-point algorithm, and our 2-
point algorithm. The distance is with respect to ground truth points.
Accuracy of our 2-point algorithm is substantially higher than the
7-point algorithm and slightly better than the 8-point algorithm. The
median error of our algorithm is 2.54. For the 8-point algorithm the
median is 2.77 while for the 7-point it is 25.8.

Figure 9: Rectification example, the images are rectified after esti-
mation of the fundamental matrix using our approach from only two
pairs of corresponding points. Each horizontal line in the images is a
pair of epipolar lines. Corresponding feature points are on the same
epipolar lines.

same epipolar lines.

7. Conclusions

We presented a method to compare lines, based on stereo
matching, suitable for finding corresponding epipolar lines.
This can be used to compute the fundamental matrix based
on only three such line correspondences.

Finding corresponding epipolar lines is greatly accelerated
if we have 2 matching points. In this case our algorithm is
very robust and fast with accuracy greatly outperforming the
7 point method and competitive with 8 point methods.
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