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ABSTRACT

We introduce a simple and effective method for retrieval of
videos showing a specific event, even when the videos of that
event were captured from significantly different viewpoints.
Appearance-based methods fail in such cases, as appearances
change with large changes of viewpoints.

Our method is based on a pixel-based feature, “motion
barcode”, which records the existence/non-existence of mo-
tion as a function of time. While appearance, motion mag-
nitude, and motion direction can vary greatly between dis-
parate viewpoints, the existence of motion is viewpoint in-
variant. Based on the motion barcode, a similarity measure is
developed for videos of the same event taken from very differ-
ent viewpoints. This measure is robust to occlusions common
under different viewpoints, and can be computed efficiently.

Event retrieval is demonstrated using challenging videos
from stationary and hand held cameras.

Index Terms— Video Event Retrieval, Motion Feature

1. INTRODUCTION

Given a query video, the goal is to retrieve all other videos
showing the same event at the same time. We consider cases
where current appearance-based methods may fail. The first
case includes videos of an event taken from significantly dif-
ferent viewpoints. The retrieval process can fail due to ap-
pearance changes in same event between views. The sec-
ond case includes videos of different events which take place
in the same location at different times. The retrieval pro-
cess can mistakenly match different events due to the simi-
lar background. Appearances-based descriptors such as SIFT
[1], SURF [2] and GIST [3] do not work well in such cases.

Many events are captured from multiple viewpoints. A
sports event, for example, is captured by people from all
around the arena. One of the key challenges is the fact
that the appearance of objects in the scene depends on the
viewpoint. Even the motion direction is different in each
viewpoint. Fig. 1 shows two views of the same instance of
the same event. In the left view the actor in front is moving
forward with his face visible, whereas in the right view the
same actor is moving in the opposite direction and only his
back is seen. In addition, in the left view the movements of

Fig. 1: Two significantly different views showing the same
instance of the same scene. Using Motion Barcodes, more
than 200 matches are found, while only 3 matches were found
with SIFT descriptors.

all other actors can be clearly observed, where in the right
view some movements are occluded.

State-of-the-art methods [4, 5, 6] focus on video retrieval
in cases where videos of events are taken from moderate
viewpoint changes. They are based on representing each
frame by appearance-based descriptors which are then pro-
cessed into effective video representations. In [4, 6], the
video representation is the multi-VLAD descriptors [7] where
SIFTs are used as frame descriptors. In [5], GISTs are the
frame descriptors. The usage of appearance-based descriptors
for event retrieval is due to their proven discrimination power.
Motion-based descriptors which are widely used in activity
recognition are not discriminative enough for such tasks.

The main contribution of this paper is the introduction of
a simple and highly effective feature, the motion barcode, for
event retrieval in cases where traditional appearance-based
descriptors fails. The motion barcode overcomes the differ-
ence in appearance and in motion by using only the exis-
tence of motion over time. A motion barcode is computed
for each pixel without incorporating spatial information, and
does not consider motion direction or magnitude. These prop-
erties make it highly invariant for different viewpoints.

Using motion information in each pixel was proposed by
Liu et al. [8]. They used the motion vector of each pixel, de-
noted as “pixel profile”, to stabilize the video sequence. How-
ever, the motion vector depends on the viewing direction and
therefore can not be used in our context.

We begin by describing the motion barcodes, and continue
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Fig. 2: Two matching motion barcodes in videos taken from
two different viewing directions of the same scene. The hori-
zontal axis is time, the black periods represent motion, and the
white periods represent no motion. Matching barcodes can
be 1 (moving) in one viewpoint and 0 (stationary) for another
viewpoint. Even when the barcode is 1 for both viewpoints, it
can be due to different objects.

with the similarity measure between the motion barcodes in
two videos. We conclude with experiments, showing that
while traditional descriptors are not sufficient our methods are
successful in the retrieval task.

2. THE MOTION BARCODES
Pixel-based Motion Barcode Corresponding pixels in dif-
ferent views should have the same stationary/non-stationary
state at the same time and the longer we inspect these pixels,
the more similar they will appear.

Given a sequence of N video frames, the N bit motion
barcode B of a pixel x, y,

Bx,y(t) =

{
1 there is motion in pixel (x, y) at time t
0 otherwise

We used background subtraction [9] to determine motion
in a pixel. An example of two motion barcodes of corre-
sponding pixels in different views can be seen in Fig. 2. The
variations between motion barcodes are due to the fact that
each reflects the motion along of a 3D ray. Thus, each of the
above motion barcodes include movements that are not be
observed by the other.

Similarity between Motion Barcodes. The similarity be-
tween two motion barcodes is their correlation. As an exam-
ple, the motion barcodes in Fig. 2 are highly correlated even
though there are additional movements in each view. Fig. 3
shows two views of the same event with a 90◦ difference
in viewing directions. The pixels were clustered according
to their motion barcodes. The motion barcodes in each re-
gion at the left view has the highest correlation score with the
motion barcodes in the corresponding region in the right view.

Pooling. In a typical sequence there are more than 300K
non-zero motion barcodes, many of them representing sim-
ilar motions. Fig. 4 shows the matching pixels, as 3D rays,
based on the existence of such motion. Since many points
in an object move together, matching is possible even be-
tween image points that are not projections of same 3D point.
We pool the motion barcodes by segmenting the video into
superpixels and select a single barcode for each superpixel.
Superpixels are computed from a “motion image” M , where
each pixel in M is the number of “1”s in its motion barcode,

Fig. 3: Two views of the same scene, with corresponding mo-
tion barcodes. In the left image there is an actor walking from
back to front and in the right image the same actor is walk-
ing from front to back. The two cameras have 90 degrees
difference in viewing directions. To enable visibility, motion
barcodes were reduced to 5 clusters by k-means. Each of the
five clusters has a different color. Each region of pixels in the
left view corresponds to a region of pixels in the right view.
The motion barcodes in corresponding regions have the high-
est correlation score. The arrows are examples for such two
regions.

(a) (b) (c)

Fig. 4: (a) The ideal case where a point in the scene is moving
across the intersection of two rays. L is for a ray (pixel) from
the left camera, R is for a ray (pixel) from the right camera.
Both pixels observe the existence of motion simultaneously.
(b) Same pixels (rays) as in (a), but motion is seen only in
the right camera. (c) Due to the 3D volume of objects in the
scene, pixels can be matched even when they observe differ-
ent points on an object.

M(x, y) =
∑

t Bx,y(t). Segmentation to superpixels is per-
formed on the motion image M using the SLIC algorithm
[10] as can be seen Fig. 5. For each superpixel we chose a rep-
resentative barcode as the rounded average of all its barcodes.
This barcode minimizes the sum of hamming distances to all
other motion barcodes in the superpixel.

Pooling the motion barcodes into superpixels yields a
fixed size representation and makes this representation robust
and effective. A similar approach was introduced in [11] for
a fixed size video representation, by pooling features in video
into supervoxels.

Similarity between videos. The similarity score between the
two videos can be evaluated based on the optimal assignment
using the bipartite matching algorithm [12]. Let Bi

1...Ki
be

the motion barcodes of Clip i. in the bipartite matching the
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(a) (b)

(c) (d)

Fig. 5: Selecting one motion barcode per superpixel. (a) The
original scene. (b) The motion image, where each pixel is the
sum of “1”s in its motion barcode. (c) The segmentation of
the motion picture to superpixels using the SLIC algorithm,
with 200 regions (d) The superpixel segmentation with 1000
regions.

weight between B1
i and B2

j is their correlation. In practice,
we use the following heuristic, with very similar results, run-
ning 100× faster.

Let Ci be the number barcodes Bi
j having at least one

match at the other video clip with correlation higher than a
given threshold. We normally use a threshold of 0.4. A dis-
cussion about the effect of this threshold appears in Sec. 3.
The similarity between the two video clips is C1

K1
+ C2

K2
. The

similarity is the fraction of vertices in each video having at
least one above-threshold match in the other video clip. The
higher the similarity score, the more similar the videos are.
The threshold values will be discussed in Sec. 3.

The similarity measure we used is similar to the bag-of-
words model with binary weights. The key difference is that
in our case we do not have a common codebook shared be-
tween all the sequences.

3. EXPERIMENTS

Dataset. Standard event retrieval datasets, such as EVVE
[13], are based on events in which appearance-based descrip-

Fig. 6: An example of two different views of the same scene
from the EPFL multi-view dataset.

Same Event Different Event
Same Viewpoints 170 110

Different Viewpoints 1.9 1.8

Table 1: Matching frames using appearance-based descrip-
tors. The results are the mean number of SIFT descriptors
matched across different video sequences. On average, com-
paring a sequence to a time shifted version of itself matched
170 descriptors. For significantly different viewing directions
of the same event there were on average 1.9 matching descrip-
tors.

Fig. 7: (a) The mean average precision (mean AP) of
SIFT+BoW, SIFT+VLAD and Motion Barcodes for event re-
trieval task. We can see that the motion barcode is highly
effective. (b) The mean AP as a function of the number of
motion barcodes with sufficient motion. The more motion
barcodes with enough motion, the higher accuracy we have.

tors are useful. In order to reflect the challenges we consider,
we used the EPFL Multi-camera pedestrians dataset [14, 15].
It includes 30 sequences of 6 different scenes under signifi-
cant multi-view settings, some of them take place in the same
location but in different times. The scenes are both indoor
and outdoor and include many occlusions. An example can
be seen in Fig. 6

Appearance-based Descriptors. In order to evaluate the
performance we compared the mean AP to appearance-
based state-of-the art methods. Following [4, 6], we used
SIFT+VLAD as our frame descriptors. As a baseline, we also
used SIFT+BoW. The codebook was created as in [4] and the
distances between the clips evaluated accordingly. Table 1
shows the average number of SIFTs matched between the
sequences. For the same event, there were on average only
1.9 matching descriptors in more than 90% of the signifi-
cantly different viewing directions. Moreover, there are many
false matches between different events due to the fact that
they share the same background. It can be seen that when
the angle between the cameras is too wide or when the event
is taking place in the same location (e.g. stadium) but at a
different time, such descriptors completely fail.

Evaluation method. The dataset was divided into 200 differ-
ent clips. We added 200 distractor clips, where the distractors
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Fig. 8: (a) The mean AP as a function of the similarity corre-
lation threshold. The y-axis is the mean AP. The x-axis is the
correlation threshold. (b) The mean AP as a function of the
length of the motion barcodes used.

are with similar activities (e.g. walking). Every clip from the
dataset was used as a query and the rest of the clips within the
set were used as the target database. For each clip, there were
2 or 3 true matches. The mean average precision (mean AP)
was evaluated over all clips in all sets.

To use the motion barcodes in the retrieval process we
removed non-informative barcodes from each clip, the mo-
tion barcodes that did not have enough motion. We required
that the motion (1’s) in each motion barcode be more than
10% of its length. We also required a minimal number of
motion barcodes, empirically set to 100. The effect of this
requirement will be discussed later.

Results. Fig. 7.a presents the effectiveness of the motion bar-
codes, under such extreme cases. It shows the performance
of each of the methods in the retrieval process. The motion
barcode outperformed both BoW and VLAD, with mean AP
of 0.7 vs. 0.051 and 0.058 respectively. Fig. 7.b shows the ac-
curacy as a function of the number of barcodes with sufficient
motion. For sequences with sufficient motion the accuracy is
high and for sequences with not enough motion the accuracy
is lower. It is therefore expected that for events with sufficient
motion the mean AP will be very high. We can also empiri-
cally predict beforehand the ability to successfully retrieve an
event by the number of motion barcodes with sufficient mo-
tion it has.

Fig. 8.a shows the effect of the correlation threshold used
for matching barcodes on the mean AP. We can see that there
is a trade-off between the specificity we require and the ro-
bustness to the viewing directions. The best result is reached
in a correlation threshold of 0.4 with peak mean AP is 0.7. It
can also be seen that the similarity is robust to the correlation
threshold since small fluctuations almost have no effect on the
mean AP. Fig. 8.b shows that the longer the motion barcodes
are, the more accurate the similarity. The peak mean AP for
motion barcodes was found when using motion barcodes of
length 1000. This was found by evaluating the mean AP for
different number of superpixels.

Stabilized Sequences. In order to verify our results on hand

(a) (b)

(c) (d)

(e) (f)

Fig. 9: Four simultaneous frames from 4 very different views.
(a)-(c) are taken by stationary cameras, and (d) is taken by a
hand-held mobile phone. (e)-(f) Motion detection masks on
two stabilized frames from the mobile phone. Although there
are many motion detection errors, the motion barcodes are
sufficient to recover the event.

held cameras we captured an event from 3 stationary cameras
and one hand held mobile phone, a total of 4 views. The mo-
bile phone sequence is with significant shakes, and was sta-
bilized using homographies [16]. Fig. 9 shows frames taken
at same time from 3 stationary views and a mobile phone.
Fig. 9.e-f show the motion detection masks on two stabilized
frames of the mobile phone. It can be seen that the motion de-
tection masks are not perfect. All sequences from this setup
were tested with the existing dataset and we compared the re-
sults with and without the stabilized sequence. The results of
the stabilized sequence is similar to the stationary sequences
with peak mean AP of 0.68.

4. CONCLUDING REMARKS

We introduced motion barcodes, a robust motion feature that
can be used to determine if two videos show the same event
even when the videos were taken from very different view-
ing directions. In such cases appearance based methods may
fail, as well as traditional motion-based features. We propose
a similarity measure between motion barcodes, and show its
effectiveness for event retrieval tasks in challenging settings.
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