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Abstract

Computing the epipolar geometry between cameras with
very different viewpoints is often problematic as matching
points are hard to find. In these cases, it has been proposed
to use information from dynamic objects in the scene for
suggesting point and line correspondences.

We propose a speed up of about two orders of magnitude,
as well as an increase in robustness and accuracy, to meth-
ods computing epipolar geometry from dynamic silhouettes.
This improvement is based on a new temporal signature:
motion barcode for lines. Motion barcode is a binary tem-
poral sequence for lines, indicating for each frame the ex-
istence of at least one foreground pixel on that line. The
motion barcodes of two corresponding epipolar lines are
very similar, so the search for corresponding epipolar lines
can be limited only to lines having similar barcodes. The
use of motion barcodes leads to increased speed, accuracy,
and robustness in computing the epipolar geometry.

1. Introduction
Calibration of multi-camera systems is normally com-

puted by finding corresponding feature points between im-
ages taken by these cameras. When not enough feature
points can be found, e.g. when the camera viewpoints vary
greatly, the epipolar geometry can be computed from sil-
houettes of moving objects that are visible in videos cap-
tured by the two cameras. The silhouettes at one time in-
stance are used to suggest matching epipolar lines which
are used to propose a fundamental matrix that is verified
over all frames.

The best methods for computing the fundamental ma-
trix use tangents to the dynamic silhouette as candidates
for epipolar lines [27]. Our approach presents a speedup of
about two orders of magnitude for these methods, and sig-
nificantly improves accuracy and robustness. This speedup
is obtained by requiring candidates for matching epipolar
lines to share a temporal signature (motion barcode).

Motion barcodes were first introduced for points in [5].
The motion barcode of a line is a binary temporal sequence,

Figure 1. When two cameras have very different viewpoints as in
this example, appearance can not be used for calibration. Instead,
calibration is possible from matching pairs of epipolar lines that
can be extracted efficiently from moving silhouettes. The yellow
lines are the epipolar lines proposed by our method, while the red
lines are the ground truth epipolar lines. The corresponding sil-
houettes are displayed at the bottom.

indicating for each frame the existence of at least one fore-
ground pixel on that line. We show that correlation between
the motion barcodes of corresponding epipolar lines is high.
By testing as possible matches only pairs of lines whose
motion barcode correlation is high, a speedup by about two
orders of magnitude is obtained. Figure 1 shows matching
epipolar lines extracted using our approach. Following [27],
we use a RANSAC approach to test possible matching pairs
of epipolar lines, and compute the epipolar geometry.

This paper is organized as follows. Section 1.1 describes
relevant prior work. Section 2 introduces the theoretical
background. Section 3 presents the motion barcodes of
lines. Section 4 shows how to match epipolar lines based on
dynamic silhouettes. Section 5 presents an iterative compu-
tation of the fundamental matrix based on the motion bar-
code. Section 6 shows our results on both synthetic and real
sequences.



1.1. Prior Work

Extracting geometrical information from the motion of
silhouettes include shape-from-silhouettes [7, 14, 3] and
camera calibration [18, 27, 6, 25, 33]. In shape-from sil-
houettes, the goal is to recover the visual hull [20, 23] of
the object. If the cameras are calibrated, this task is rel-
atively clear as each individual viewing cone [15] can be
backprojected and the visual hull is the intersection of these
cones.

The case of uncalibrated cameras has also been investi-
gated, where the goal is to recover epipolar geometry. The
first step is to establish correspondences between special
points on the silhouettes boundaries, called frontier points
[9], across the different views. These points are images of
object points that are tangent to an epipolar plane. Given
corresponding frontier points, spatial constraints resulting
from matching epipolar tangents [26] are used to recover
the epipolar geometry.

Matching corresponding frontier points and silhouette
tangents can be found using robust estimation procedures
such as RANSAC [13]. Matching frontier points, or direc-
tions of four epipolar tangent lines, are initially guessed.
Furukawa et al. [16], assuming orthographic projection,
match frontier points using RANSAC. They used the dis-
tances between parallel tangent lines on the silhouettes as a
geometric measure for matching. Given the epipoles and
the accurate tangent envelope of the silhouettes, frontier
points can be easily matched using two outermost epipolar
tangents. This property was deployed by Wong and Cipolla
[30] for turntable motion. The most relevant previous work
is Sinha and Pollefeys [27], addressing projective projec-
tion. They propose a RANSAC based search of possible
epipoles, where a proposed epipole in each of the two cor-
responding images is generated from the intersection of two
lines randomly selected from the tangent envelope.

Calibration without explicitly matching tangent epipolar
lines has also been considered. [6] used constraints based
on the back projection of silhouettes boundaries in multi-
ple views. [32] jointly optimized the 3D position of fron-
tier points and the camera parameters in a bundle adjust-
ment. However, both methods require a good initialization
of silhouette boundaries and camera parameters. Hernandez
[18] also proposed constraints based on the back projection
of silhouettes for maximizing silhouette coherence, but his
method is limited to turntable motion.

Binary temporal signatures of pixels which are based on
the motion of the objects in the scene have been previously
introduced. Ermis et al. [12] deploy such features to find
accurate correspondence between pixels across distributed
cameras with the assumption of a distant, almost planar,
scene. Drouin et al. [11] matched 2D points between a
video projector and a digital camera. They require a planar
surface and the same ordering of pixels across views. Ben-

Figure 2. The geometry of two views with a tangent epipolar plane
and a frontier point. Π is the tangent epipolar plane and l, l′ are
tangent epipolar lines in Π. The epipolar plane is tangent to the
object at the frontier points P .

Artzi et al. [5] introduce a method to match events across
different views even in the case of significant parallax and
occlusions. However, that approach can not be applied to
match pixels for camera calibration, as its localization is
very inaccurate, as explained in Section 3. Using a tempo-
ral histogram as a temporal feature of a pixel is introduced
in [19], but it is effective only for objects that are static for
substantial periods.

2. Theoretical Background

The geometric relation between corresponding silhou-
ettes across views is based on frontier points and epipolar
tangencies [22, 8, 21].

The geometry of two views containing silhouettes is pre-
sented in Fig. 2. For the rest of the paper let candidate
points be image points that are on the boundary of the sil-
houette as well as on the boundary of its convex hull. C
and C ′ are the contours of the object in 3D. These con-
tours project to silhouette boundaries S and S′. The two
contours intersect in the frontier point P . The projections
of P onto the two views are the candidate points, p and p’.
The 3 points P, p, p′ span a tangent epipolar plane Π be-
tween the two views. The points p and p′ must lie on the
corresponding tangent lines l and l′ and the point P is the
location where the tangent epipolar plane Π is tangent to
the surface, e, e′ are the epipoles. The frontier points are
the only true corresponding points between the boundaries
S and S′. If we have accurate tangents to the silhouettes and
the location of the epipole is known, then the epipolar tan-
gent lines give the corresponding points p and p′. This idea
was traditionally used as a spatial cost function between
corresponding tangential epipolar lines and points. See for
example [16, 27].

Finding frontier points without the epipole locations is
difficult [24]. For a video sequence, when the location of at



Figure 3. In dynamic scenes, the geometrical relation between pix-
els is characterized only up to corresponding epipolar lines. Each
pixel in one video can correspond to different pixels at different
times in the other video. For stationary cameras, the different pix-
els in the second view will always reside on the epipolar line.

Figure 4. The motion barcodes of two corresponding epipolar
lines, l and l′, in a video of a moving person at three time instances.
If a point on an epipolar line is a projection of a foreground point at
time t, then there exists a point on its corresponding epipolar line
which is also a projection of a foreground point at the same time.
In the figure, at time t = 2, 3 the two corresponding epipolar lines
contain a point from a silhouette. This can be a different 3D point
due to viewpoint differences, e.g. P1, P2. The motion barcode of
both epipolar lines in this figure, bl and bl′ , is [0,1,1].

least two frontier points are known, their tangent lines are
epipolar lines. They can be used to calculate the epipole
and the location of the other frontier points in all the other
frames. Alternatively, if the epipoles are known we can
use the tangent lines to the silhouettes to locate the fron-
tier points. It follows that either the frontier points or the
epipoles are needed in order to extract the epipolar lines.

Here we introduce a different approach which does not
require prior knowledge of either frontier points or epipoles
in order to extract matching epipolar lines. We directly
compute epipolar line correspondences using the motion
observed simultaneously by them.

(a) (b)

Figure 5. Uniform sampling of lines from the tangent envelope.
(a) Lines sampled every 1◦, (b) Lines sampled every 4◦

3. Motion Barcode: Temporal Signature of
Lines

Given two frames captured at the same time from differ-
ent viewpoints, two corresponding pixels view a single 3D
point. However, in a dynamic scene, a pixel in one view is
bound to correspond to different pixels of the other view at
different times, located on the corresponding epipolar line.

Fig. 3 illustrates a typical case. At time t = 1, a sin-
gle pixel in the right view corresponds to some pixel in the
left view. At time t = 2, due to the motion of the object
in scene, the same pixel corresponds to a different pixel in
the other view. For video sequences captured by station-
ary cameras the corresponding pixels will always reside on
corresponding epipolar lines.

It follows that if an epipolar line contains at least one
silhouette pixel at time t, then its corresponding epipolar
line should contain such a pixel at the same time. This is
illustrated in Fig. 4. For time t = 2, 3 there are points from
objects that project onto the corresponding epipolar line. If
a point on line l is part of a silhouette, this point or another
silhouette point occluding it, will be seen on line l′. Alter-
natively, the silhouette could be blocked by a background
object or be out of the frame.

The motion barcode of a line l, bl(t), indicates for each
line l in frame t the existence of at least one foreground
pixel on that line. bl(t) = 1 if the line intersects a silhou-
ette, and bl(t) = 0 otherwise. The motion barcodes of two
corresponding epipolar lines is very similar. Differences oc-
cur only in cases of occlusions.

The temporal similarity between two lines l and l′ is de-
fined as the correlation between their motion barcodes;

dt(l, l
′) = corr(bl(t), bl′(t)) (1)

4. Epipolar Geometry by Matching Lines
The epipolar geometry can be computed from 3 pairs

of corresponding epipolar lines [17]. The search space for
matching epipolar lines across views is very large if we con-
sider all possible pairs of lines. This search can be reduced
to fewer lines by using only candidate lines, lines tangent to



Figure 6. Finding corresponding epipolar lines by their motion bar-
code. Every pair of frames contributes one possible match. The
dashed lines are the true epipolar lines and the green lines are the
candidate pairs having highest barcode correlation.

the tangent envelope of the silhouette. The tangent envelope
includes points that are on the silhouette boundary as well
as on the boundary of its convex hull. We follow the work
of [27], checking for possible correspondence only lines on
the tangent envelope. Using only candidate lines is justi-
fied as the projection of the frontier point is on the tangent
envelope.

We select several corresponding pairs of frames from the
video sequences, so that the pairs will be sufficiently differ-
ent from each other. For each pair of frames, we sample K
candidate lines from the tangent envelope of its silhouettes.
We compute the correlation between the motion barcodes
for all pairs of candidate lines from the two correspond-
ing images. This results in K2 correlations per each pair
of frames. From every pair of frames we select the single
pair of epipolar lines with the highest barcode correlation.
Fig. 5 shows all candidate lines, and Fig. 6 shows the pairs
of candidate lines having highest barcode correlation. We
compute the epipolar geometry from three matching pairs
based on [17]. The computation is by RANSAC similarly
to [27]. The fundamental matrix is then fully optimized as
described in Section 5.

The matching is carried out in two phases. An offline
phase where the motion barcodes of the tangent lines are
computed. In the online phase, the actual matching is car-
ried out by computing the correlation between motion bar-
codes of pairs of lines, and computing the epipolar geome-
try using RANSAC. The overall efficiency depends mainly
on accuracy of candidate matches as it effects the number
of required iterations in the RANSAC phase. Details are in
Section 6.

5. Temporal Optimization of the Fundamental
Matrix

Existing optimization techniques for computing the fun-
damental matrix are based on minimizing a spatial cost
function without taking into account the temporal dimen-
sion. We present a technique based on both spatial and tem-

poral cost functions (Eq. 1).
We assume a set of corresponding points, presumably

the projection of frontier points {(xi, x
′
i)}Mi=1, a set of cor-

responding epipolar lines {(li, l′i)}Ni=1 and an initial estima-
tion of the fundamental matrix F . The optimization is it-
erative. In the first step we optimize the point correspon-
dences based on the lines, using the geometric reprojection
error [17] as the spatial cost function. In the second step
we optimize the epipolar line correspondences based on the
given points, using the temporal cost function (Eq. 1). We
optimize the directions of the epipolar lines for each pair
of corresponding points. Based on the lines matched in this
step, we estimate epipoles and an epipolar line homography.
We then evaluate a set of corresponding points and obtain
an estimation of the fundamental matrix. The process is de-
scribed in the following:

• Step one:

1. Minimize reprojection error based on
{(xi, x

′
i)}Mi=1.∑

i

d(xi, x̂i)
2 + d(x′i, x̂

′
i)

2 s.t. x̂iF̂ x̂i
′ = 0

This minimization is by the Levenberg-Marquardt
procedure and gives a new set of points and funda-
mental matrix.

2. set li = F̂ x̂i
′, l′i = F̂T x̂i.

• Step two:

1. For each pair of lines, minimize

Cl(l̂, l̂
′) = ds(l, l̂) + ds(l

′, l̂′) + dt(l̂, l̂
′) (2)

ds measures the angular deviation between lines,
and dt is the barcode correlation (Eq. 1). ds ensures
the lines are within an angle difference of no more
than Θ. The choice of Θ will be discussed next. l̂, l̂′

are sampled uniformly from [−Θ,Θ] around l, l′.
We take the maximal match and if we have more
than one maximum, the one with the minimal angle
difference is selected.

2. Estimate new epipoles e, e′ and epipolar line ho-
mography from {l̂i, l̂′i}.

3. Set {xi, x
′
i} by projecting onto the nearest l, l′. Es-

timate F from epipoles and lines homography.

The process terminates when the deviation of the esti-
mated epipoles is small enough or a maximum number of
iterations is exceeded.

The choice of the angular tolerance Θ defines the region
where we look for the newly estimated lines. It depends
on the epipolar envelope and the required probability for



(a) (b)

(c) (d)

Figure 7. The datasets used in the experiments. (a) The synthetic
Kung-Fu girl dataset. (b) The Boxer dataset. (c) The Street Dancer
dataset (d) The Dancing Girl dataset.

locating the line [29]. Direct modeling of epipolar enve-
lope is difficult and therefore it is empirically evaluated, see
[10, 31, 17]. In our implementation we set Θ to 0.2◦ which
results in an accurate estimation. This reflects our assump-
tion that the distortion is low. The specific choice can be
adjusted according to the needs.

6. Experiments

Our approach was validated on synthetic and real se-
quences. We compared our method with the state of the
art method [27], where the fundamental matrix is computed
by RANSAC-based sampling of epipolar lines. The eval-
uation was done with the following datasets: the Kung-Fu
girl [2], Boxer [4], Street Dancer [28] and Dancing Girl [1].
Fig. 7 shows images from the datasets and Table 1 gives the
details.

We compared the accuracy and efficiency of the two
methods. The accuracy of the fundamental matrix in all ex-
periments is measured by the symmetric epipolar distance
(error) [17] using ground truth matching points. The sym-
metric epipolar distance is the distance between each point
and the epipolar line corresponding to the other point. The
acquisition of the ground truth points is discussed in Sub-
section 6.3.

The efficiency of the methods is evaluated as follows.
In both methods the fundamental matrix is computed us-
ing RANSAC sampling of epipolar lines. In each iteration,
the symmetric epipolar distance of each hypothesis is eval-
uated. Every 1000 RANSAC iterations the best hypothesis

Dataset Type Camera Pairs Frames
KungFu Girl Synthetic 300 200
Boxer Real 6 778
Street Dancer Real 15 250
Dancing Girl Real 28 200

Table 1. Dataset properties

No. of Non-Linear Optimizations Needed to Reach a Desired Accuracy
Sym Epipolar Distance 1.5 1 0.8 0.5 0.4 0.3

Kung-Fu Ours 1 2 4 23 71 302
Sinha 19 65 134 822 1989 8659

Street Dancer Ours 3 7 20 255 616 1233
Sinha 37 159 340 1871 7485 -

Dancing Girl Ours 2 4 9 129 918 13776
Sinha 36 149 388 13972 - -

Boxer Ours 2 5 12 111 996 -
Sinha 333 2994 2994 - - -

Table 2. The expected number of non-linear optimizations re-
quired to reach a given accuracy of the fundamental matrix. Ac-
curacy is measured using symmetric epipolar distance with re-
spect to ground-truth points. The best hypothesis is selected ev-
ery 1000 RANSAC iterations, and is further optimized using non-
linear (LM) method. In each dataset, the number of optimizations
is averaged over all cameras pairs. Empty cells indicate that the
required accuracy was not attained.

Figure 8. The ratio between our method and Sinha [27] of the
number of non-linear optimization procedures required to reach
a given fundamental matrix accuracy. The horizontal axis is the
accuracy in terms of the desired symmetric epipolar distance of
ground truth points.

is selected and optimized using the non-linear Levenberg-
Marquardt (LM) optimization procedure as in [27]. The ef-
ficiency is measured by the number of non-linear optimiza-
tion procedures required to reach a given accuracy (error).
The less non-linear optimization procedures the more effi-
cient the method is. A detailed description is in Subsec-
tion 6.3.

There is a difference in the error used during RANSAC
and the error we use for final evaluation. During RANSAC,
the quality of an hypothesis is evaluated based on inliers,
as ground truth is unknown. This error is usually lower
from the error of ground truth points. We used ground-truth
points for a non biased evaluation.

Efficiency The expected number of non-linear LM opti-



Symmetric Epipolar Distance
RANSAC Hypotheses 1K 2K 5K 10K 20K 100K

Kung-Fu ours 1.11 0.85 0.64 0.54 0.47 0.35
Sinha 4.9 3.41 2.12 1.63 1.29 0.78

Street Dancer ours 1.93 1.29 0.97 0.85 0.75 0.59
Sinha 4.31 3.35 2.4 1.96 1.59 1.01

Dancing Girl Ours 1.4 1.09 0.83 0.72 0.63 0.49
Sinha 6.28 4.57 2.96 2.15 1.6 1

Boxer Ours 1.63 1.46 0.85 0.74 0.65 0.48
Sinha 7.06 5.82 4.02 3.37 2.8 1.86

Table 3. Accuracy reached by each method for a fixed number
of RANSAC samples. Accuracy is after a non-linear optimization
phase, measured with respect to ground-truth points.

Ours Sinha
Kung-Fu 0.26 0.51

Street Dancer 0.36 0.62
Dancing Girl 0.41 0.72

Boxer 0.39 1.33

Table 4. The best accuracy reached by each method on all camera
pairs in each dataset after 500K RANSAC hypotheses. The ac-
curacy is the median over all camera pairs of the best symmetric
epipolar distance reached after the non-linear optimization phase.

mization procedures required to reach a fundamental matrix
having a better accuracy than a predefined level is shown
in Table 2. For each pair of cameras, we executed 500K
RANSAC iterations resulting in 500K hypotheses. Every
1000 RANSAC iterations the best hypothesis is selected and
optimized non-linearly. The accuracy of the optimized fun-
damental matrix, in terms of the symmetric epipolar dis-
tance of ground truth points, is recorded. The accuracy
values after all non-linear optimization procedures from all
camera pairs in the dataset form our samples. For example,
in the Kung-Fu dataset we executed 500K×300 RANSAC
iterations, performed 500×300 LM optimizations, and col-
lected 150,000 samples. We build the cumulative distribu-
tion function (cdf) of the error from all camera pairs. Given
the cdf the expected number of samples is extracted. It can
be seen that our method quickly converged to sub-pixel ac-
curacy. Fig. 8 shows the ratio between the required number
of non-linear optimization procedures in our method and
Sinha[27]. The horizontal dashed lines are in ratios of 10,
30 and 100. For accuracy of 0.8 pixel, the median of the
ratios between the required number of non-linear optimiza-
tion procedures is 38, and for accuracy of 1.5 pixel the me-
dian of the ratios is 17.

Accuracy We evaluated the best accuracy (minimal er-
ror) reached for a given number of RANSAC generated hy-
potheses. For each pair of cameras in the dataset, we gener-
ated 500K RANSAC hypotheses by each method. We sub-
divided the hypotheses into equal sized groups. From each
group we selected the best hypothesis (lowest symmetric
epipolar distance) with respect to the ground truth points.
We then applied non-linear optimization and measured the
accuracy of the resulting fundamental matrix. The accu-

(a) (b)

(c) (d)

Figure 9. The fraction of camera pairs whose fundamental matri-
ces reached a given symmetric epipolar distance. The accuracy is
evaluated over 500K RANSAC iterations. The x-axis is the given
accuracy. The y-axis is the fraction of camera pairs that reached
this accuracy. The blue bars are our method and the red bars are
Sinha’s method. (a) The Kung-Fu dataset. (b) Boxer dataset. (c)
Street Dancer. (d) Dancing Girl.

racy is the median over all optimized fundamental matrices.
For example, in the Kung-Fu dataset we have 150,000 hy-
potheses. For evaluation of the highest accuracy reached by
5K hypotheses, we divided them into 30 equal size groups,
optimized the best hypothesis from each group and evalu-
ated the median over the symmetric epipolar distances. Ta-
ble 3 shows the results. It can be seen that for the Kung-Fu
dataset, our method requires approximately 2K RANSAC
iterations followed with 1 non-linear optimization proce-
dure to reach an accuracy of 0.85. Using our approach, in
less than 5K RANSAC iterations all datasets reached sub-
pixel accuracy. Table 4 shows the best median accuracy
reached by each method. As expected, the synthetic dataset
has best accuracy, 0.26, while the worst accuracy, 0.41, was
in the Dancing Girl dataset which has many errors in the
silhouettes.

We also evaluated the fraction of the number of camera
pairs whose fundamental matrices reached a given accuracy
using all the samples, after the non-linear phase. The results
are shown in Fig. 9. For the Kung-Fu dataset, for 298 out of
300 camera pairs the accuracy reached 1.5, including pairs
where the cameras are facing each other. This is discussed
in the next subsection. On average, the number of camera
pairs where a given accuracy was reached using our method
is by a factor of 1.8 higher than the number of cameras with
same accuracy using Sinha’s method. The average is calcu-
lated over all camera pairs over all datasets.



Figure 10. When the epipole is at the center of the image, e.g.
when two cameras are facing one another, it may not be possible
to find epipolar lines. In this case the epipole is often inside the
convex hall. In this example the convex hull is marked in blue,
and the yellow point is the epipole. The red line is a ground truth
epipolar line. The green line is an hypothesized epipolar line.

6.1. Frames Lacking Frontier Points

Frames that lack frontier points are problematic for most
tangent based methods. This happens when the epipoles
are inside the convex hull of the dynamic objects, a com-
mon case when the two cameras face each other. An exam-
ple is illustrated in Fig. 10. Using our method, even when
the pairs of cameras are facing each other, the fundamental
matrix can still be recovered. This is possible as the ob-
ject is moving, and there are often a few frames where the
epipole if outside the convex hall. These few frames are
enough for the calibration, due to the accuracy of the se-
lected candidates for epipolar lines. For example, it can be
seen in Fig. 9 that in the Kung-Fu dataset, for accuracy of
1.5, our method fails for only two camera pairs, whereas
Sinha’s method fails on 78 camera pairs.

6.2. Ground-Truth Error vs. Inlier Error

The symmetric epipolar distance [17] is a quality mea-
sure for fundamental matrices, and is defined over a set of
pairs of corresponding points across two images.

In ordinary computations of the fundamental matrix,
when no ground truth data is known, the symmetric epipolar
distance is calculated based on hypothesized inlier points.
Since some inliers are often wrong correspondences, there
is a significant difference between the error computed on
inlier points and the error computed on ground truth points
(when available). As we have access to the ground truth in
our datasets, we used the ground truth points to measure the
symmetric epipolar distance and evaluate our experiments.

6.3. Implementation Details

Precomputation of Motion Barcodes. The motion bar-
codes were computed for points on the silhouette bound-
aries which are also on the convex hull boundary, called
candidate points. 180 angles are sampled every 2◦, each
angle defines a tangent line to the silhouette through one
of the candidate points. This results in 180 candidate lines

per frame, and a motion barcode is computed for all these
lines. In a video having N frames, each motion barcode is
a binary sequence of length N . A barcode matrix is defined
for each frame having 180 rows and N columns. Each col-
umn represents a frame, and each row represents a tangent
line. Each row is the motion barcode of the corresponding
candidate line. Given corresponding frames of two cameras
frames, the distance between all possible pairs of candidate
lines is computed by multiplying their motion barcode ma-
trices, resulting in an 180×180 affinity matrix of candidate
lines.

Given the N pairs of frames of two cameras, we extract
for each frame the single pair of candidate lines having the
highest barcode correlation. This results in N pairs of pos-
sible matching epipolar lines, each having higher barcode
correlation.

RANSAC Sampling. The efficiency of fundamental ma-
trix computation can be broken into the initialization cost,
the number of hypotheses needed to be generated, the cost
of generating an hypothesis and the cost of hypothesis veri-
fication. In both methods the cost of the model verification
phase is identical as it is indifferent to the model genera-
tion. The comparison is therefore the number of RANSAC
hypotheses required by each method. In the following we
provide a detailed description.

Generating the hypothesized model is as follows. In our
method, three matching pairs having high barcode correla-
tion were randomly selected from the pre-computed table
of barcode correlations between all pairs of candidate lines.
For the Sinha method, as described in [27], two matching
hypothesized lines were extracted based on sampling the
directions of the tangents in one frame. The third match-
ing pair of lines was computed using the epipole gener-
ated by the first two lines, and a tangent to a silhouette
in another frame. Given three proposals for corresponding
epipolar lines, the fundamental matrix was computed using
the method described in [27]. The computation of the third
matching pair of lines by the generated epipoles could be
applied in our approach as well, requiring selection of only
two matching lines instead of three. This could improve the
accuracy of the method. On the other hand, it requires ad-
ditional computations for finding the exact tangents in each
RANSAC iteration. We empirically saw that sampling three
lines is faster than sampling two lines together with the ad-
ditional tangent computations.

The cost of each RANSAC iteration depends on (a) lines
match generation and (b) the computation of the funda-
mental matrix from the epipolar line homography and the
epipoles. For the motion barcode method the first part is in-
stantaneous as it involves only index selection, since match-
ing pairs of lines are computed beforehand. For the baseline
method each iteration introduces the computation of six tan-
gents, where the computation of the last pair of tangents



involves finding the frontier points with respect to the hy-
pothesized epipoles. The second part is the same for all the
methods and introduces the major cost of each iteration. We
assume that the first part is instantaneous also in the base-
line method and consider the cost of each iteration as the
cost of the second part.

Computing the motion barcode distance between all
pairs of candidate lines adds computation efforts to our
method. This computational cost was equivalent to 35 it-
erations of RANSAC, which we added to the cost of our
method.

Ground Truth points. For accurate evaluation of the
symmetric epipolar distance we extracted matching frontier
points across different views, using the given ground-truth
silhouettes and the given ground truth fundamental matrix.
For each frame, points whose tangent line is within an angu-
lar deviation of 1◦ of the true epipolar line were extracted.
A pair of points was considered frontier if their epipolar dis-
tance using the known fundamental matrix is less than 0.01.
This results in a cloud of points that might be spread out un-
evenly. From these points we sampled ground truth points
that have a distance of at least 15 pixels from each other,
resulting in several dozen point, well spread out, per view.

7. Concluding Remarks
Motion barcodes were introduced as efficient temporal

signatures for lines, signatures which are viewpoint invari-
ant for matching epipolar lines. The effectiveness of mo-
tion barcodes was demonstrated in camera calibration using
candidate epipolar lines. In this case, computing candidate
fundamental matrices only from candidate lines that have
matching motion barcodes, reduced computational costs by
about two orders of magnitude.
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